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III. Structure Analyses Using Microtwins 
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The general theory for kinematical diffraction from crystals having planar faults is applied to the case of 
microtwinning and the related cases occurring in some minerals where there is a disordered sequence of two 
types of structure having small differences in composition, unit-cell dimensions and axial orientations. It is 
shown that, if intensities are measured for unresolved or partially resolved pairs of diffraction spots using 
conventional techniques, errors may well arise if the measurements are interpreted on the usual assumption 
that the intensities from the different crystal regions are summed incoherently. Calculations for representative 
cases suggest that errors, due to the neglect of the spreading of intensity maxima into continuous streaks, may 
amount to 20 or 30% when overlapping diffraction spots have structure amplitudes of opposite sign, but are 
usually much smaller, especially if the structure amplitudes are of the same sign. 

In the first paper of this series [(Cowley, 1976a, here- 
inafter referred to as (I)] a general theory for 
kinematical diffraction from crystals having planar 
faults was presented. Applications to particular types of 
faults were given there and in the second paper of this 
series (Cowley, 1976b). These applications should be 
sufficient to illustrate the derivation of expressions 
appropriate to special cases from the general theory 
and it is not our intention to multiply examples. How- 
ever in the course of discussions with Drs Gabrielle and 
J. D. H. Donnay on the interpretation of electron 
diffraction patterns from feldspars the question was 
raised as to the influence of microtwinning on the 
intensities which would be measured and used in the 
course of an X-ray diffraction structure analysis. We 
have therefore considered an idealized case of this kind 
and attempted to estimate the magnitude of any errors 
which might result from the application of accepted 
practices of structure an alysis. 

There are many cases reported in the literature for 
which it appears that twin planes occur more or less at 
random and, on the average only a few unit cells apart. 
One case, illustrated graphically by high-resolution 
electron microscopy, is that of monoclinic enstatite 

(Iijima & Buseck, 1976). In this case the two orienta- 
tions of the monoclinic a axis differ by a sufficiently 
large angle to allow most pairs of related diffraction 
spots to be clearly separated, although there is 
considerable diffuse streaking intensity between them. 

For some of the feldspars the separation of axial 
orientations may be very much smaller. The evidence 
of variation of axial orientations is not clear from dif- 
fraction patterns but may be deduced from the irregular 
mottling of electron-microscope images (the 'tweed' 
structure). For bytownite (McLaren & Marshall, 1974) 
the variation in orientation of the unit-cell axes over 
distance of the order of 100/~ appears to accompany 
compositional variations associated with an exsolution 
process. Similar orientational variations appear to be 
present in a Himalaya mine orthoclase (Prince, 
Donnay & Martin, 1973), giving rise to a tweed 
structure in high-resolution electron micrographs (Ii- 
jima, private communication), but it is not clear 
whether a compositional variation is involved in thi,~ 
case. 

For convenience we continue our discussion in terms 
of 'twins', but the treatment will not exclude such cases 
involving variations of composition as well as small 
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variations of unit-cell dimensions and axial orienta- 
tions where no twin relation between the two (or more) 
components is involved. 

It is commonly assumed that  the intensities of  X-ray 
diffraction patterns from twins will be the sum of the 
intensity contributions from the orientations present. 
Even when spots from two orientations overlap or coin- 
cide it is assumed that the measured intensity from the 
joint peak will be p l F l l  2 + qlF212 where F 1 and F 2 are 
the structure amplitudes of the two types of unit cell 
and p and q are the relevant fractions of the total 
sample volume (Grainger, 1969; Zachariasen & Plet- 
tinger, 1965). 

On the other hand, it is readily seen that if two 
reflections coincide, the intensity at the reciprocal- 
lattice point will be proportional to [pF 1 + qg212. For 
example, the scattering amplitude for the whole pseudo- 
crystal is 

F ( u ) =  ~ i F i e x p ( 2 z m .  Ri), (1) 

where F i is the scattering amplitude and R i is the vector 
to the origin of the ith unit cell. For  a vector u to a 
common reciprocal-lattice point, all the exponential 
factors will be unity so that 

IF(u)I 2 =  I ~.iFil 2= I p F  l + qr212. (2) 

The same argument applies to the reciprocal-lattice 
points of an average lattice in cases when the 
differences in orientation of the two twin components 
are very small and the spots overlap but do not 
coincide. 

The result (2) holds in practice only for a coherently 
diffracting region of the sample. The coherence width 
of the incident X-ray beam is normally no more than a 
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(b) 

I. 
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Fig. 1. The model system used as a basis for calculations. In the 

real-space diagrams (a) and (b) the angles between the vectors R~ 
and R 2 have been exaggerated. Diagram (c) shows the pairs of 
diffraction maxima around the reciprocal-lattice points of the 
average lattice. 

few hundred hngstr6ms. If  the distance between twin 
planes is much greater than this the single-crystal 
regions diffract separately and no problem arises. In the 
presence of  microtwinning with twin planes separated 
by distances comparable with the coherence width, the 
situation needs to be examined in detail. 

A simple model 

We consider the case of two types of layer, one unit-cell 
thick, for which the layer structure amplitudes are F~ 
and F 2 and the repetition vectors are R 1 and R 2. Faults 
in which one type of layer is followed by the other type 
occur with a probability tt. At  the interfaces there is no 
change in the unit-cell content or repetition vector for 
either type of layer so that the parameters defined in (I) 
have values, Sij = 0, Gij = 0, gi : ½, °~12 : ( 1 2 1  : (l = A  i. 
Then the general expression of (I) [equation (7)] 
reduces to 

N 2 i , 1- -  ( 1 - -  a)  exp (2xiu. R/) 

~t exp (2n:iu. Ri) 
× F,  + 

1 - ( 1  ~ ~ e x p  ~2~iu o Rj~ J 

Writing, for convenience 
I _ _  ai = a exp (2xiu. 113, 

f i  -- 1 -- (1 - - a )  exp (2mu.R~,  

we obtain 

-~(u)= Z [,fi Fi + + F i + ' ' "  
"1 

+ c . c . -  IF)2 t 
, /  

f z IF )  2 + f~lrzJ 2 + a~V'~F 2 + a'2F, F* 

(Z A - , ,9 

(3) 

+ c . c . -  IFll 2 -  IF212. (4) 

For the simple case of microtwinning illustrated in Fig. 
1 with a small angle between the vectors R~ and R2, we 
define an average repetition vector R and put (Fig. lb) 

R I = R +  A, R 2 =  R - - A .  

The reciprocal-space representation, Fig. l(c), shows 
the reciprocal lattices for the two crystals considered 
separately (large distances between twin planes). 
Around each reciprocal-lattice point h for the average 
lattice there is a pair of spots at h + e with the vector e 
perpendicular to A and of magnitude I el = (h. A)/R.  



740 D I F F R A C T I O N  BY CRYSTALS WITH PLANAR FAULTS. III 

If the probability of twinning is appreciable, the pairs 
of spots will tend to merge into streaks along the layer 
line. We can then calculate the intensity for microtwins 
by considering the intensity as a function of u = h + 
where I gl is a continuous variable or, to use fractional 
coordinates, we plot I(u)  for values of (u - h). R = 
~ . R  = r~R. 

For this case (4) may be written 

I 
~r (u) = c~(1 -- a)[ iF 112{ 1 - cos 2nu. (R -- A)} 

+ IF212{ 1 - -  cos 2nu. (R + A)} 

+ 2{AIA z + BIB2) cos 2nu.A 

+ (A IB2 - A2BI)  sin 2nu. A}(cos 2nu. R 

- -  cos 2nuA)] [tl 2 sin 2 2nu. R + (1 -- a) 2 

× (cos 2nu. R -- cos 2nu. A)2] -1, (5) 

where we have put F i = A i + iBi. 
Analysis of this expression readily reveals that it has 

the expected behavior in the limiting cases. Thus for st 
tending to zero we have delta-function peaks for u. R = 
+u.  A of weight IF~I 2 and IF212. For a reciprocal-lattice 
point of the average lattice, e = 0, cos 2nu. R = 1, the 
intensity is proportional to I FI + F212 if u. A is small. 

For the case A = 0 with unit cells of identical dimen- 
sions but differing in content, (5) reduces to (apart from 
a delta function at the reciprocal-lattice point) 

2I(u) st 21F l - -  F212 

N 1 - s t  {4st 2 + ( 1 -  ,02(2;¢e~R) 2} 

if eR is small so that there is a diffuse peak of half 
width 2heR -- 2tt/(1 - tt). 

In general, the spreading of the peaks along the layer 
line due to the disordered streaking will be comparable 
to the separation of the pairs of spots due to twinning if 
2nh.A _~ 2it/(1 - ~ ) .  For larger values of h .A  two 
distinct reflections will be seen. For smaller values of 
h. A there will be only a single intensity maximum. 

The expression (5) can be integrated analytically 
over one reciprocal-lattice periodicity. The integrated 
intensity is always proportional to I Fll 2 + [ F212, 
independent of the magnitudes of A and -. 

The question remains as to whether the intensity of 
the peak or peaks which would be measured using the 
standard techniques of X-ray diffraction, which involve 
a certain amount of integration, would also be pro- 
portional to  If1[ 2 + IF212. In order to estimate the 
magnitude of any possible errors in this assumption we 
have calculated intensity curves using (5) for various 
values of h. A a n d ,  which seemed appropriate. 

E s t i m a t i o n  o f  m e a s u r e d  in tens i t i e s  

In diffractometer measurements of X-ray diffraction 
peak intensities it is customary to use either an a~ scan 

or a 0-20  scan over an angular range of 1.4 or 2 °, 
which is normally sufficient to establish a background 
value on either side of the peak and to integrate over 
the peak which has a width of 1 ° or less due to 
incident-beam divergence and mosaic spread. A 
spreading of the peaks by an amount 2 x 10 -2  rad by 
the effect of disordered stacking is therefore about the 
maximum which would allow the standard measure- 
ment routines to be used. 

For a value of 2off(1 - - a )  = 0.1 with a repetition 
distance R of 10]k the spreading of the peak is given by 
2he = 10-2/~k -1. For a reciprocal-lattice point at a 
distance 1A -1 from the origin the angle subtended by 
the half width of the peak is 3 x 10 -3 rad. Hence, if we 
take a = 0.05, so that the average distance between 
twin planes is 20 unit cells, the spreading of the peaks 
due to the microtwinning disorder will be less than that 
due to beam convergence and mosaic spread and will 
not normally be distinguishable from these effects. 

We have calculated intensity profiles for diffraction 
peaks for a = 0.05 and for 2nh.A values of 0.025, 
0.05 and 0.10. For the smallest of these h. A values the 
separation of the pair of peaks due to twinning is 
considerably less than the spread due to s~ so that only 
a single peak will be observed. For the largest h .A  
value the pair of peaks is separated although it is not 
clear whether the two peaks will be observed and 
measured separately in normal X-ray diffraction 
experiments. The value, 2nh. A = a, is intermediate. 

In Fig. 2 the intensity profiles calculated for a = 0.05 
and the above mentioned values of 2nh. A are plotted 
for various values of the ratio F I / F  2 ranging from 1 to 
--1. For convenience F1 and F 2 are assumed to be real. 
Calculations for complex F 1 and F 2 show much the 
same behaviour. 

For 2nh. A = a/2 and FI, F 2 of the same sign, a 
single relatively sharp peak is seen. For F 1 and F 2 of 
opposite sign there is a sharp minimum in the peak. As 
expected, this is zero at the reciprocal-lattice point, e = 
0, for F1 + F 2 = 0. However, this minimum is so sharp 
that it is unlikely to be observed in practice. 

For 2nh. A = 0.1 the minimum may well be so pro- 
nounced and broad for F~ and F 2 of opposite sign that 
two distinct peaks may be observable in practice, 
although for F~ and F 2 of the same sign the separation 
is not so distinct. In general, the intensity peaks are 
seen to be symmetrical only for F I / F  z = + 1. The 
asymmetry for other cases derives from the sin 2nu. R 
terms which occur in the expansion of the numerator of 
(5). 

Since integration of the intensity curves gives a value 
proportional to I Fll 2 + I F212 in every case, the possible 
error in assuming this value for the measured intensity 
comes from the difficulty of measuring the total 
intensity under the curves of Fig. 2. The difficulty arises 
because an appreciable part of the intensity is con- 
tained in the long tails of the peaks extending to eR = 
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+1, i.e. from one reciprocal-lattice point to the next. 
There will be, in general, no way in which these long 
tails can be separated from background scattering due 
to residual white radiation, thermal diffuse scattering or 
other causes. The asymmetry of the tails for F J F  2 :/: 
+ 1 will not usually help the separation because asym- 
metries in background due to other causes are not 
usually determined quantitatively. 

In order to estimate the errors which may result from 
the neglect of these long tails on the intensity peaks, we 

have drawn in Fig. 2 with dashed lines the values which 
may be assumed for the background under the peaks if 
the tails due to the disorder are not distinguished from 
other background contributions. In the usual diffrac- 
tometer measuring routine a background count is made 
at either end of the 1.4 or 2 ° scan and the background 
is assumed to be given by a straight-line interpolation 
between these two points. If the end points of the scan 
are obviously high on the sides of the peak and clearly 
not in the background region, the measurement will 
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Fig. 2. Intensity profiles of diffraction maxima calculated for a = 0.05 and the indicated values of 2nh. A and the ratios of structure 
amplitudes. 
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presumably be rejected and repeated with a wider scan. 
Hence the backgrounds which we have indicated in Fig. 
2 correspond to something like the highest values which 
would be measured for any scan width. 

The actual points at which the background measure- 
ments would be made on the plots of  Fig. 2 will depend 
strongly on the geometry of measurement. The 
measured intensity for each diffractometer position is 
given by the integration of the product of  the scattering 
power distribution with the detector function, which 
may be represented to a first approximation by a 
volume in reciprocal space of uniform detector sensi- 
tivity, as illustrated in Fig. 3. The measurement of  a 
peak intensity is made by translating this volume over 
the reciprocal-lattice point by either a 0--20 or an 09 
scan. The actual distance in terms of 2her which is 
covered by a 1.4 or 2 ° scan will then depend on the 
distance of the reciprocal-lattice point from the origin, 
dh -1, the angle between the directions of the 0 -20  or 09 
scans with the layer lines and the unit-cell dimension, 
R. In some scan directions, as in the case of a 0--20 
scan with the short axes of the measuring volume nearly 
perpendicular to the streaked layer lines of Fig. 1 (c), the 
measuring volume will not intersect the elongated spots 
at either end of the scan. Then the distance in 2ne, R 
over which the integration of intensity will be made will 
depend on the long dimension of the measuring volume, 
defined by the detector angle fl which is usually about 
1 . 5  ° . 

If we take 1-5 o as either the scan length or the value 
of angle fl, whichever is relevant, we see that for R = 
10 A the corresponding minimum range of 2her is 
0-32 for dh -1 = 0.2/ i , -1 and 1.6 for dh -1 = 1/~-1. The 
ranges of 2her for which we have assumed the peaks 
to exceed background vary from 0.25 to about 0.75. 
Hence, our estimates of error will represent the 
maximum error which may be introduced for some 
particular d~ ~ and R values but may  be considerable 
overestimates for other conditions. They are therefore 
to be taken as rough indications of the upper limits of  
possible error. 

On the basis of the background assumptions 
indicated in Fig. 2, the maximum errors made in 

# 

8 - 2 8  

Fig. 3. Diagram of the measuring volume in reciprocal space and 
its motions for an to scan and a 0--20 scan. 

assuming the integrated intensities to be proportional to 
I FII 2 + I/'212 are as indicated in Fig. 4. The errors are 
seen to be 30 to 40% for F~ and F 2 of opposite sign, 
decreasing to 0 to 5% for F~ and F 2 of the same sign 
and almost equal. The errors are less for smaller values 
of  h. A but, as seen from the form of (6), will not be 
zero for h. A = 0. 

It is to be expected that for a = 0 there will be just 
two sharp peaks having intensities I Fl l  2 and I/'212. In 
order to find the dependence on ~t we have made calcu- 
lations for a = 0.2 and a = 0.02 with h . A  = a in each 
case. For a = 0.2 the error curve was identical with the 
a --- 0-05 = h. A curve of Fig. 2 within the broad limits 
of  error of our rough estimations. With ct = 0.02 = 
2nh. A the maximum errors were found to be roughly 3 
of those for a = 0.05 = 2nh.A.  On the other hand, 
since the spread of the peaks is less for the lower a 
value the maximum error values will occur less often, 
being restricted to smaller d~ 1 and R values. However, 
it appears that appreciable errors are possible even for 
very small values of ~ corresponding to twin planes 
spaced at intervals of 50 to 100 unit cells. 

Conclusions 

Our analysis has indicated that for microtwins the fact 
that the intensity at the reciprocal-lattice point is pro- 
portional to IF 1 + F212 is scarcely relevant. The inte- 
gration over angle which is unavoidable in normal 
intensity measurement procedures will give a result 
more nearly proportional to I F~I 2 + I/'212 except when 
the degree of disorder is so great that the usual pro- 
cedures would clearly be inappropriate. 

The main source of error in the assumption that the 
integrated intensity is proportional to I FII 2 + I/'212 
comes from the difficulty of including the long tails of 
the intensity peaks in the measurement. From the 
curves of Fig. 2 it is seen that these tails are present 
whether the peak is resolved into two components or 
not. The form of the intensity maxima is such that up to 
one third of the intensity may be contained in these 

~. - 0.05 
.~ . , f 0 . 0 2 5  • 

40 ' , X , ' ; r ~ . R  = ~ 0 . 0 5  x 

~ o '~" ~ , , ~  o 

- 0 ! 

Fig. 4. Estimated maximum errors of intensity measurement as a 
function of the ratio of structure amplitudes. 
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long tails which may not be distinguishable from 
background scattering due to other sources. 

Our estimates of error from this source are admit- 
tedly very rough and subjective and are intended only 
as indications of the possible magnitudes of the errors 
and their variation with the relevant parameters. The 
actual errors of measurement will depend on a number 
of factors. The curves of Fig. 2 will be convoluted in 
practice with an instrumental measuring function and a 
mosaic spread function which will vary in width and 
form with the distance of the reciprocal-lattice point 
from the origin and also with the angle between the h 
vector and the repetition vector R. The estimates of 
background will depend on the measuring routine used. 

In the reciprocal-space representation of Fig. 1 (c) it 
is seen that for our simple model the value of h. A is 
zero on one line through the origin and varies 
systematically with distance from this line. Since from 
Fig. 4 it is seen that there is only a weak dependence of 
the error on h. A, the effect will be to produce only a 
small systematic variation of measured intensity. 
However, the variation of the form and size of the 
measuring volume in reciprocal space (Fig. 3) will tend 
to give a larger systematic error with position of the 
reciprocal-lattice point since the varying range of 
measurement in terms of 2heR will give an error 
ranging from almost zero to the maximum indicated in 
Fig. 4. 

In general, the errors in relative intensities will be less 
if F 1 and F 2 are of the same sign and differ by less than 
50%. It is for the occasional pairs of reflections for 
which F 1 and F 2 have opposite sign that the relatively 
large errors may be produced. 

It is suggested that when microtwinning is indicated 
by streaking in X-ray diffraction or electron diffraction 
patterns or by contrast effects in high-resolution 
electron micrographs (Wenk, 1976) estimates may be 
made of the possible errors on the basis of the above 
considerations in relation to the techniques used for 
measurement of X-ray diffraction intensities. In this 
way improved accuracy may be obtained in structure 
analyses when microtwinning is present. 

The authors are grateful to Drs Gabrielle and J. D. 
H. Donnay for stimulating discussions in the initiation 
of this project and in review of the manuscript, and also 
to Dr R. Von Dreele for advice on diffractometer 
measuring techniques. The work was supported by 
NSF grant DMR 76-06108. 
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Minimizing the Variance in Integrals and Derivatives of the Electron Density 
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A method for minimizing the variance in integrals and derivatives of electron densities by filtering the 
scattering amplitudes is established. The optimum filters for the density and its integrals and derivatives are 
shown to be the same. Calculations with experimental data show that the variance of integrated densities is 
not very sensitive to the shape of the region of integration, indicating that good estimates may be made using 
simple shapes. A very convenient expression is given for the variance of the integral over a sphere. Coppens 
& Hamilton [Acta Cryst. (1968), B24, 925-929] have shown that accurate estimates of integrated densities 
are possible. Filtering can further improve these estimates. By contrast, good estimates of derivatives of the 
electron density remain unlikely, even using filtered diffraction data. 

Introduction 

In quantitative studies of the structure of materials by 
the analysis of diffraction data it is often of interest to 

calculate gradients and volume integrals of the electron 
density. When the density is evaluated by Fourier syn- 
thesis of the structure factors, F(S) (S is the reciprocal- 
lattice vector), difficulties arise in the treatment of the 


